# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Dicyclohexyl(4-isopropylphenyl)phosphane selenide

#### Sizwe Makhoba, Alfred Muller\* and Zanele Phasha

Research Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa Correspondence e-mail: mullera@uj.ac.za

Received 25 January 2012; accepted 3 February 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.023; wR factor = 0.057; data-to-parameter ratio = 24.5.

In the title compund,  $C_{21}H_{33}PSe$ , the Se=P bond is part of a distorted tetrahedral environment on the P atom. Both cyclohexyl groups adopt chair conformations. A cone angle of 170° was calculated using an adaptation of the Tolman model. Intermolecular  $C-H \cdots Se$  and  $C-H \cdots Cg$  contacts are observed (Cg is the centroid of the benzene ring).

#### **Related literature**

For background studies aimed at understanding the transition metal-phosphorus bond, see: Muller et al. (2008); Roodt et al. (2003). For transition metal complexes with  $PCy_2(4-^{i}Pr C_6H_4$ ), see: Makhoba *et al.* (2011); Vuba & Muller (2012). For background to cone angles, see: Tolman (1977).



#### **Experimental**

Crystal data

C21H33PSe  $M_r = 395.4$ Monoclinic,  $P2_1/c$ a = 13.1311 (10) Åb = 13.6991 (10) Å c = 11.7821 (8) Å  $\beta = 103.106 (2)^{\circ}$ 

V = 2064.2 (3) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation  $\mu = 1.90 \text{ mm}^{-1}$ T = 100 K $0.22\,\times\,0.14\,\times\,0.1$  mm

#### Data collection

```
Bruker APEX DUO 4K CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2008)
  T_{\min} = 0.681, T_{\max} = 0.833
```

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.023$ | 210 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.057$               | H-atom parameters constrained                              |
| S = 1.02                        | $\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$  |
| 5140 reflections                | $\Delta \rho_{\rm min} = -0.24 \ {\rm e} \ {\rm \AA}^{-3}$ |

28000 measured reflections

 $R_{\rm int} = 0.040$ 

5140 independent reflections

4397 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C13-C18 benzene ring.

| $D - H \cdots A$                                     | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$          | $D - \mathbf{H} \cdots A$ |
|------------------------------------------------------|--------------|-------------------------|-----------------------|---------------------------|
| $C1 - H1 \cdots Se1^{i}$<br>C9 - H9B \cdots Cg1^{ii} | 1.00<br>0.99 | 3.09<br>2.81            | 4.0500 (14)<br>3.6471 | 162<br>143                |
| 2                                                    | . 1 1.       | (::) 1                  | 3                     |                           |

Symmetry codes: (i)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ ; (ii)  $x, -y - \frac{1}{2}, z - \frac{3}{2}$ .

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008): molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Research funding from the University of Johannesburg is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2386).

#### References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany
- Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Makhoba, S., Muller, A., Meijboom, R. & Omondi, B. (2011). Acta Cryst. E67, m1286-m1287.
- Muller, A., Meijboom, R. & Roodt, A. (2008). Dalton Trans. pp. 650-657.
- Roodt, A., Otto, S. & Steyl, G. J. (2003). Coord. Chem. Rev. 245, 121-137.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

Vuba, B. & Muller, A. (2012). Acta Cryst. E68, m14-m15.

# supplementary materials

Acta Cryst. (2012). E68, o648 [doi:10.1107/S1600536812004643]

# Dicyclohexyl(4-isopropylphenyl)phosphane selenide

## Sizwe Makhoba, Alfred Muller and Zanele Phasha

#### Comment

The bonding of phosphorus to transitional metals have being investigated extensively, with several attempts to divide the properties of the phosphorus ligand into steric and electronic effects. Various techniques such as single-crystal X-ray crystallography, multi nuclear NMR and IR (Roodt *et al.*, 2003) have been used to this extent. Recently we have also included selenium derivatives of the phosphorus compounds into this study (Muller *et al.*, 2008). This route seems viable as the use of expensive transition metals and steric influence from other ligands in the coordination sphere are eliminated, leaving only crystal packing effects as an additional influence on the steric property of the phosphorus ligand. As part of this investigation we report here the selenium derivative of  $PCy_2(4-iPr-C_6H_4)$  where Cy = cyclohexyl and iPr = iso-propyl.

Molecules of the title compound (Fig. 1) adopts a distorted tetrahedral arrangement about the P atom with average C—P —C and Se—P—C angles of 106.0° and 112.7° respectively. The cone angle was found to be 170° when the Se—P distance was adjusted to 2.28 Å (the default value from Tolman, 1977). This value is *ca* 5° larger than previous reported values where the present phosphine was bonded to a transition metal centre (Makhoba *et al.*, 2011; Vuba & Muller, 2012). This indicates to some extend the flexibility of this phosphine ligand and its ability to use space to enable less crowding of its substituents. Weak intermolecular C—H…Se and C—H…Cg contacts are observed (Table 1, Fig. 2) and link the molecules as infinite chains in the [001] direction.

#### Experimental

KSeCN (10 mg, 0.0694 mmol) and  $PCy_2(4-Pr-C_6H_4)$  (21.96 mg, 0.0694 mmol) were both dissolved in a minimum amount of methanol (10–20 ml). The KSeCN solution was added drop wise (5 min) to the phosphine solution while stirring at room temperature. The final solution was left to evaporate slowly in order to give crystals that are suitable for single-crystal X-ray study.

#### Refinement

All H atoms were positioned in geometrically idealised positions with C—H = 1.00 Å, 0.99 Å, 0.98 Å and 0.95 Å for methine, methylene, methyl and aromatic H atoms respectively and constrained to ride on their parents atoms with  $U_{iso}(H) = 1.2U_{eq}$ , except for methyl where  $U_{iso}(H) = 1.5U_{eq}$  was utilized. The initial positions of methyl H atoms were located from a Fourier difference map and refined as fixed rotor. The highest residual electron density of 0.41 e Å<sup>-3</sup> was located 0.76 Å from C19, and the deepest hole of -0.24 e Å<sup>-3</sup> is 0.81 Å from P1. Both represent no physical meaning.

#### **Computing details**

Data collection: *APEX2* (Bruker, 2011); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* and *XPREP* (Bruker, 2008); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare



material for publication: WinGX (Farrugia, 1999).

### Figure 1

A view of the title compound showing the numbering scheme of atoms and displacement ellipsoids (drawn at the 50% probability level). H atoms omitted for clarity.



## Figure 2

Packing diagram showing the interactions observed for the structure.

## Dicyclohexyl(4-isopropylphenyl)phosphane selenide

| Crystal | data |
|---------|------|
|---------|------|

| $C_{21}H_{33}PSe$                                | F(000) = 832                                                       |
|--------------------------------------------------|--------------------------------------------------------------------|
| $M_r = 395.4$                                    | $D_{\rm x} = 1.272 {\rm ~Mg} {\rm ~m}^{-3}$                        |
| Monoclinic, $P2_1/c$                             | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å              |
| Hall symbol: -P 2ybc                             | Cell parameters from 8561 reflections                              |
| a = 13.1311 (10)  Å                              | $\theta = 2.3 - 28.2^{\circ}$                                      |
| b = 13.6991 (10)  Å                              | $\mu = 1.90 \text{ mm}^{-1}$                                       |
| c = 11.7821 (8) Å                                | T = 100  K                                                         |
| $\beta = 103.106 \ (2)^{\circ}$                  | Cuboid, colourless                                                 |
| V = 2064.2 (3) Å <sup>3</sup>                    | $0.22 \times 0.14 \times 0.1 \text{ mm}$                           |
| Z = 4                                            |                                                                    |
| Data collection                                  |                                                                    |
| Bruker APEX DUO 4K CCD                           | 28000 measured reflections                                         |
| diffractometer                                   | 5140 independent reflections                                       |
| Graphite monochromator                           | 4397 reflections with $I > 2\sigma(I)$                             |
| Detector resolution: 8.4 pixels mm <sup>-1</sup> | $R_{\rm int} = 0.040$                                              |
| $\varphi$ and $\omega$ scans                     | $\theta_{\rm max} = 28.3^{\circ},  \theta_{\rm min} = 1.6^{\circ}$ |
| Absorption correction: multi-scan                | $h = -17 \rightarrow 17$                                           |
| (SADABS; Bruker, 2008)                           | $k = -18 \rightarrow 18$                                           |
| $T_{\min} = 0.681, \ T_{\max} = 0.833$           | $l = -15 \rightarrow 15$                                           |
|                                                  |                                                                    |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
|-------------------------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.023$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.057$                               | neighbouring sites                                        |
| S = 1.02                                        | H-atom parameters constrained                             |
| 5140 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0262P)^2 + 0.6415P]$         |
| 210 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                            |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                       |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$ |
| direct methods                                  | $\Delta \rho_{\min} = -0.24 \text{ e} \text{ Å}^{-3}$     |

#### Special details

**Experimental**. The intensity data was collected on a Bruker Apex DUO 4K CCD diffractometer using an exposure time of 10 s/frame. A total of 5967 frames were collected with a frame width of  $0.5^{\circ}$  covering up to  $\theta = 28.31^{\circ}$  with 100% completeness accomplished.

Analytical data: <sup>31</sup>P {H} NMR (CDCl<sub>3</sub>, 160 MHz):  $\delta$  = 54.1 (s, 1P)

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

|     | x             | У             | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|---------------|---------------|---------------|-----------------------------|
| P1  | 0.63459 (3)   | 0.16154 (3)   | 0.07287 (3)   | 0.01280 (8)                 |
| Se1 | 0.589654 (11) | 0.097347 (10) | 0.218666 (12) | 0.01702 (5)                 |
| C1  | 0.53424 (10)  | 0.24106 (10)  | -0.01384 (12) | 0.0147 (3)                  |
| H1  | 0.564         | 0.2718        | -0.0762       | 0.018*                      |
| C2  | 0.43736 (11)  | 0.18232 (11)  | -0.07302 (13) | 0.0193 (3)                  |
| H2A | 0.4569        | 0.1344        | -0.1272       | 0.023*                      |
| H2B | 0.4107        | 0.1458        | -0.0132       | 0.023*                      |
| C3  | 0.35114 (11)  | 0.24925 (11)  | -0.14041 (14) | 0.0228 (3)                  |
| H3A | 0.375         | 0.2799        | -0.206        | 0.027*                      |
| H3B | 0.2881        | 0.2099        | -0.1733       | 0.027*                      |
| C4  | 0.32313 (12)  | 0.32877 (12)  | -0.06224 (15) | 0.0239 (3)                  |
| H4A | 0.2693        | 0.3722        | -0.1089       | 0.029*                      |
| H4B | 0.2936        | 0.2985        | -0.0005       | 0.029*                      |
| C5  | 0.41921 (12)  | 0.38870 (11)  | -0.00652 (14) | 0.0222 (3)                  |
| H5A | 0.3998        | 0.4382        | 0.046         | 0.027*                      |
| H5B | 0.4452        | 0.4234        | -0.068        | 0.027*                      |
| C6  | 0.50595 (11)  | 0.32336 (11)  | 0.06286 (13)  | 0.0193 (3)                  |
| H6A | 0.4826        | 0.2944        | 0.1296        | 0.023*                      |
| H6B | 0.5688        | 0.3634        | 0.0942        | 0.023*                      |
| C7  | 0.66780 (10)  | 0.06797 (10)  | -0.02535 (12) | 0.0139 (3)                  |
| H7  | 0.6056        | 0.0244        | -0.0499       | 0.017*                      |
| C8  | 0.69309 (11)  | 0.11074 (10)  | -0.13626 (13) | 0.0174 (3)                  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| H8A  | 0.6317       | 0.1473        | -0.1804       | 0.021*     |
|------|--------------|---------------|---------------|------------|
| H8B  | 0.7523       | 0.157         | -0.1145       | 0.021*     |
| C9   | 0.72156 (12) | 0.02992 (11)  | -0.21352 (13) | 0.0198 (3) |
| H9A  | 0.6606       | -0.0136       | -0.24         | 0.024*     |
| H9B  | 0.7393       | 0.0594        | -0.2833       | 0.024*     |
| C10  | 0.81410 (12) | -0.02969 (11) | -0.14730 (13) | 0.0205 (3) |
| H10A | 0.8764       | 0.0128        | -0.1253       | 0.025*     |
| H10B | 0.8301       | -0.0824       | -0.1981       | 0.025*     |
| C11  | 0.78950 (12) | -0.07406 (11) | -0.03796 (13) | 0.0206 (3) |
| H11A | 0.8515       | -0.11         | 0.0058        | 0.025*     |
| H11B | 0.7313       | -0.1213       | -0.0606       | 0.025*     |
| C12  | 0.75906 (11) | 0.00468 (10)  | 0.04060 (12)  | 0.0173 (3) |
| H12A | 0.8203       | 0.0469        | 0.0712        | 0.021*     |
| H12B | 0.7388       | -0.0269       | 0.1078        | 0.021*     |
| C13  | 0.75153 (10) | 0.23630 (10)  | 0.11383 (12)  | 0.0137 (3) |
| C14  | 0.77795 (11) | 0.30400 (10)  | 0.03631 (12)  | 0.0159 (3) |
| H14  | 0.7302       | 0.3173        | -0.0356       | 0.019*     |
| C15  | 0.87363 (11) | 0.35183 (10)  | 0.06399 (13)  | 0.0171 (3) |
| H15  | 0.8906       | 0.3976        | 0.0106        | 0.021*     |
| C16  | 0.94567 (10) | 0.33377 (10)  | 0.16937 (12)  | 0.0160 (3) |
| C17  | 0.91711 (11) | 0.26870 (10)  | 0.24719 (13)  | 0.0167 (3) |
| H17  | 0.9639       | 0.2567        | 0.3201        | 0.02*      |
| C18  | 0.82115 (11) | 0.22069 (10)  | 0.22028 (12)  | 0.0150 (3) |
| H18  | 0.8031       | 0.1769        | 0.2751        | 0.018*     |
| C19  | 1.05187 (11) | 0.38265 (11)  | 0.19607 (13)  | 0.0193 (3) |
| H19  | 1.0879       | 0.3646        | 0.2775        | 0.023*     |
| C20  | 1.11914 (12) | 0.34511 (13)  | 0.11461 (15)  | 0.0278 (4) |
| H20A | 1.1266       | 0.2741        | 0.1225        | 0.042*     |
| H20B | 1.1884       | 0.3757        | 0.1354        | 0.042*     |
| H20C | 1.0855       | 0.3616        | 0.0339        | 0.042*     |
| C21  | 1.04331 (12) | 0.49378 (11)  | 0.19028 (14)  | 0.0241 (3) |
| H21A | 1.0042       | 0.5134        | 0.1126        | 0.036*     |
| H21B | 1.1135       | 0.5223        | 0.2055        | 0.036*     |
| H21C | 1.0068       | 0.5169        | 0.249         | 0.036*     |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | <i>U</i> <sup>22</sup> | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|--------------|------------------------|--------------|---------------|--------------|---------------|
| P1  | 0.01478 (16) | 0.01252 (16)           | 0.01143 (17) | -0.00245 (12) | 0.00365 (13) | -0.00016 (13) |
| Se1 | 0.02188 (8)  | 0.01700 (8)            | 0.01373 (8)  | -0.00395 (6)  | 0.00727 (5)  | 0.00076 (5)   |
| C1  | 0.0143 (6)   | 0.0151 (7)             | 0.0144 (7)   | -0.0018 (5)   | 0.0029 (5)   | 0.0004 (5)    |
| C2  | 0.0165 (6)   | 0.0179 (7)             | 0.0223 (8)   | -0.0026 (5)   | 0.0017 (6)   | -0.0022 (6)   |
| C3  | 0.0170 (7)   | 0.0237 (8)             | 0.0247 (8)   | -0.0027 (6)   | -0.0014 (6)  | 0.0017 (6)    |
| C4  | 0.0187 (7)   | 0.0245 (8)             | 0.0288 (9)   | 0.0034 (6)    | 0.0064 (6)   | 0.0064 (7)    |
| C5  | 0.0246 (7)   | 0.0176 (7)             | 0.0244 (8)   | 0.0027 (6)    | 0.0054 (6)   | 0.0019 (6)    |
| C6  | 0.0215 (7)   | 0.0169 (7)             | 0.0191 (8)   | 0.0009 (5)    | 0.0040 (6)   | -0.0019 (6)   |
| C7  | 0.0162 (6)   | 0.0125 (6)             | 0.0130 (7)   | -0.0018 (5)   | 0.0037 (5)   | -0.0012 (5)   |
| C8  | 0.0224 (7)   | 0.0164 (7)             | 0.0142 (7)   | 0.0010 (5)    | 0.0060 (6)   | 0.0011 (5)    |
| C9  | 0.0278 (7)   | 0.0193 (7)             | 0.0135 (7)   | 0.0011 (6)    | 0.0075 (6)   | 0.0000 (6)    |
| C10 | 0.0236 (7)   | 0.0199 (7)             | 0.0200 (8)   | 0.0008 (6)    | 0.0092 (6)   | -0.0022 (6)   |

# supplementary materials

| C11 | 0.0261 (7) | 0.0176 (7) | 0.0195 (8) | 0.0038 (6)  | 0.0082 (6) | 0.0008 (6)  |  |
|-----|------------|------------|------------|-------------|------------|-------------|--|
| C12 | 0.0211 (7) | 0.0179 (7) | 0.0131 (7) | 0.0024 (5)  | 0.0041 (5) | 0.0019 (5)  |  |
| C13 | 0.0150 (6) | 0.0127 (6) | 0.0134 (7) | -0.0014 (5) | 0.0037 (5) | -0.0030 (5) |  |
| C14 | 0.0177 (6) | 0.0173 (7) | 0.0118 (7) | -0.0018 (5) | 0.0011 (5) | 0.0003 (5)  |  |
| C15 | 0.0199 (7) | 0.0169 (7) | 0.0149 (7) | -0.0044 (5) | 0.0047 (5) | 0.0020 (5)  |  |
| C16 | 0.0155 (6) | 0.0151 (6) | 0.0168 (7) | -0.0019 (5) | 0.0027 (5) | -0.0030 (5) |  |
| C17 | 0.0173 (6) | 0.0170 (7) | 0.0145 (7) | 0.0005 (5)  | 0.0009 (5) | -0.0002(5)  |  |
| C18 | 0.0191 (6) | 0.0125 (6) | 0.0136 (7) | 0.0005 (5)  | 0.0044 (5) | 0.0003 (5)  |  |
| C19 | 0.0165 (6) | 0.0234 (8) | 0.0165 (7) | -0.0047 (6) | 0.0010 (5) | 0.0004 (6)  |  |
| C20 | 0.0186 (7) | 0.0364 (9) | 0.0290 (9) | 0.0006 (6)  | 0.0064 (6) | -0.0011 (7) |  |
| C21 | 0.0236 (7) | 0.0239 (8) | 0.0243 (8) | -0.0089 (6) | 0.0045 (6) | -0.0019 (6) |  |

Geometric parameters (Å, °)

| P1—C13     | 1.8176 (13) | С9—Н9В       | 0.99        |
|------------|-------------|--------------|-------------|
| P1         | 1.8321 (14) | C10-C11      | 1.524 (2)   |
| Р1—С7      | 1.8442 (14) | C10—H10A     | 0.99        |
| P1—Se1     | 2.1288 (4)  | C10—H10B     | 0.99        |
| C1—C2      | 1.5329 (18) | C11—C12      | 1.532 (2)   |
| C1—C6      | 1.5421 (19) | C11—H11A     | 0.99        |
| C1—H1      | 1           | C11—H11B     | 0.99        |
| C2—C3      | 1.531 (2)   | C12—H12A     | 0.99        |
| C2—H2A     | 0.99        | C12—H12B     | 0.99        |
| C2—H2B     | 0.99        | C13—C18      | 1.3908 (19) |
| C3—C4      | 1.524 (2)   | C13—C14      | 1.3994 (19) |
| С3—НЗА     | 0.99        | C14—C15      | 1.3886 (19) |
| С3—Н3В     | 0.99        | C14—H14      | 0.95        |
| C4—C5      | 1.524 (2)   | C15—C16      | 1.4018 (19) |
| C4—H4A     | 0.99        | C15—H15      | 0.95        |
| C4—H4B     | 0.99        | C16—C17      | 1.390 (2)   |
| C5—C6      | 1.531 (2)   | C16—C19      | 1.5143 (19) |
| C5—H5A     | 0.99        | C17—C18      | 1.3928 (19) |
| C5—H5B     | 0.99        | C17—H17      | 0.95        |
| С6—Н6А     | 0.99        | C18—H18      | 0.95        |
| С6—Н6В     | 0.99        | C19—C21      | 1.527 (2)   |
| C7—C8      | 1.536 (2)   | C19—C20      | 1.533 (2)   |
| C7—C12     | 1.5392 (19) | C19—H19      | 1           |
| С7—Н7      | 1           | C20—H20A     | 0.98        |
| C8—C9      | 1.533 (2)   | C20—H20B     | 0.98        |
| C8—H8A     | 0.99        | C20—H20C     | 0.98        |
| C8—H8B     | 0.99        | C21—H21A     | 0.98        |
| C9—C10     | 1.524 (2)   | C21—H21B     | 0.98        |
| С9—Н9А     | 0.99        | C21—H21C     | 0.98        |
| C13—P1—C1  | 105.70 (6)  | C10—C9—H9B   | 109.5       |
| C13—P1—C7  | 104.63 (6)  | С8—С9—Н9В    | 109.5       |
| C1—P1—C7   | 107.81 (6)  | H9A—C9—H9B   | 108         |
| C13—P1—Se1 | 112.99 (5)  | C9—C10—C11   | 110.45 (12) |
| C1—P1—Se1  | 113.56 (5)  | C9—C10—H10A  | 109.6       |
| C7—P1—Se1  | 111.56 (5)  | C11—C10—H10A | 109.6       |
|            | × /         |              |             |

| C2—C1—C6   | 111.41 (11) | С9—С10—Н10В   | 109.6       |
|------------|-------------|---------------|-------------|
| C2—C1—P1   | 111.05 (10) | C11—C10—H10B  | 109.6       |
| C6—C1—P1   | 110.26 (10) | H10A—C10—H10B | 108.1       |
| C2—C1—H1   | 108         | C10—C11—C12   | 111.36 (12) |
| C6—C1—H1   | 108         | C10—C11—H11A  | 109.4       |
| P1—C1—H1   | 108         | C12—C11—H11A  | 109.4       |
| C3—C2—C1   | 111.18 (12) | C10—C11—H11B  | 109.4       |
| C3—C2—H2A  | 109.4       | C12—C11—H11B  | 109.4       |
| C1—C2—H2A  | 109.4       | H11A—C11—H11B | 108         |
| C3—C2—H2B  | 109.4       | C11—C12—C7    | 111.80 (12) |
| C1—C2—H2B  | 109.4       | C11—C12—H12A  | 109.3       |
| H2A—C2—H2B | 108         | C7—C12—H12A   | 109.3       |
| C4—C3—C2   | 111.46 (13) | C11—C12—H12B  | 109.3       |
| С4—С3—НЗА  | 109.3       | C7—C12—H12B   | 109.3       |
| С2—С3—НЗА  | 109.3       | H12A—C12—H12B | 107.9       |
| C4—C3—H3B  | 109.3       | C18—C13—C14   | 118.74 (12) |
| С2—С3—Н3В  | 109.3       | C18—C13—P1    | 119.72 (11) |
| H3A—C3—H3B | 108         | C14—C13—P1    | 121.31 (10) |
| C5—C4—C3   | 110.84 (12) | C15—C14—C13   | 120.29 (13) |
| C5—C4—H4A  | 109.5       | C15—C14—H14   | 119.9       |
| C3—C4—H4A  | 109.5       | C13—C14—H14   | 119.9       |
| C5—C4—H4B  | 109.5       | C14—C15—C16   | 121.17 (13) |
| C3—C4—H4B  | 109.5       | C14—C15—H15   | 119.4       |
| H4A—C4—H4B | 108.1       | C16—C15—H15   | 119.4       |
| C4—C5—C6   | 110.98 (12) | C17—C16—C15   | 117.95 (13) |
| C4—C5—H5A  | 109.4       | C17—C16—C19   | 121.34 (13) |
| С6—С5—Н5А  | 109.4       | C15—C16—C19   | 120.70 (13) |
| C4—C5—H5B  | 109.4       | C16—C17—C18   | 121.21 (13) |
| С6—С5—Н5В  | 109.4       | C16—C17—H17   | 119.4       |
| H5A—C5—H5B | 108         | C18—C17—H17   | 119.4       |
| C5—C6—C1   | 111.31 (12) | C13—C18—C17   | 120.56 (13) |
| С5—С6—Н6А  | 109.4       | C13—C18—H18   | 119.7       |
| С1—С6—Н6А  | 109.4       | C17—C18—H18   | 119.7       |
| С5—С6—Н6В  | 109.4       | C16—C19—C21   | 112.13 (12) |
| C1—C6—H6B  | 109.4       | C16—C19—C20   | 110.84 (12) |
| H6A—C6—H6B | 108         | C21—C19—C20   | 110.70 (13) |
| C8—C7—C12  | 110.53 (11) | C16—C19—H19   | 107.7       |
| C8—C7—P1   | 113.34 (9)  | C21—C19—H19   | 107.7       |
| C12—C7—P1  | 110.03 (9)  | C20—C19—H19   | 107.7       |
| С8—С7—Н7   | 107.6       | C19—C20—H20A  | 109.5       |
| С12—С7—Н7  | 107.6       | C19—C20—H20B  | 109.5       |
| Р1—С7—Н7   | 107.6       | H20A—C20—H20B | 109.5       |
| C9—C8—C7   | 111.02 (11) | С19—С20—Н20С  | 109.5       |
| С9—С8—Н8А  | 109.4       | H20A—C20—H20C | 109.5       |
| С7—С8—Н8А  | 109.4       | H20B—C20—H20C | 109.5       |
| С9—С8—Н8В  | 109.4       | C19—C21—H21A  | 109.5       |
| С7—С8—Н8В  | 109.4       | C19—C21—H21B  | 109.5       |
| H8A—C8—H8B | 108         | H21A—C21—H21B | 109.5       |
| С10—С9—С8  | 110.89 (12) | C19—C21—H21C  | 109.5       |

| С10—С9—Н9А    | 109.5        | H21A—C21—H21C   | 109.5        |
|---------------|--------------|-----------------|--------------|
| С8—С9—Н9А     | 109.5        | H21B—C21—H21C   | 109.5        |
|               |              |                 |              |
| C13—P1—C1—C2  | 169.50 (10)  | C9—C10—C11—C12  | -56.47 (16)  |
| C7—P1—C1—C2   | 58.04 (11)   | C10—C11—C12—C7  | 54.94 (16)   |
| Se1—P1—C1—C2  | -66.09 (11)  | C8—C7—C12—C11   | -53.92 (15)  |
| C13—P1—C1—C6  | -66.51 (11)  | P1-C7-C12-C11   | -179.86 (10) |
| C7—P1—C1—C6   | -177.97 (9)  | C1—P1—C13—C18   | 147.20 (11)  |
| Se1—P1—C1—C6  | 57.90 (10)   | C7—P1—C13—C18   | -99.12 (12)  |
| C6—C1—C2—C3   | 53.72 (17)   | Se1—P1—C13—C18  | 22.43 (13)   |
| P1-C1-C2-C3   | 177.05 (10)  | C1—P1—C13—C14   | -38.34 (13)  |
| C1—C2—C3—C4   | -55.38 (17)  | C7—P1—C13—C14   | 75.35 (13)   |
| C2—C3—C4—C5   | 57.02 (17)   | Se1—P1—C13—C14  | -163.10 (10) |
| C3—C4—C5—C6   | -57.05 (17)  | C18—C13—C14—C15 | 2.3 (2)      |
| C4—C5—C6—C1   | 55.67 (17)   | P1-C13-C14-C15  | -172.26 (11) |
| C2-C1-C6-C5   | -54.09 (16)  | C13—C14—C15—C16 | 0.0 (2)      |
| P1-C1-C6-C5   | -177.88 (10) | C14—C15—C16—C17 | -2.0 (2)     |
| C13—P1—C7—C8  | -61.65 (11)  | C14—C15—C16—C19 | 177.00 (13)  |
| C1—P1—C7—C8   | 50.53 (11)   | C15—C16—C17—C18 | 1.8 (2)      |
| Se1—P1—C7—C8  | 175.86 (8)   | C19—C16—C17—C18 | -177.24 (13) |
| C13—P1—C7—C12 | 62.67 (11)   | C14—C13—C18—C17 | -2.5 (2)     |
| C1—P1—C7—C12  | 174.85 (9)   | P1-C13-C18-C17  | 172.11 (11)  |
| Se1—P1—C7—C12 | -59.81 (10)  | C16—C17—C18—C13 | 0.5 (2)      |
| C12—C7—C8—C9  | 55.13 (15)   | C17—C16—C19—C21 | -124.22 (15) |
| P1—C7—C8—C9   | 179.19 (10)  | C15—C16—C19—C21 | 56.82 (19)   |
| C7—C8—C9—C10  | -57.63 (16)  | C17—C16—C19—C20 | 111.50 (16)  |
| C8—C9—C10—C11 | 57.88 (16)   | C15—C16—C19—C20 | -67.46 (18)  |

## Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 benzene ring.

| D—H···A                    | D—H  | H···A | D···· $A$   | D—H···A |
|----------------------------|------|-------|-------------|---------|
| C1—H1···Se1 <sup>i</sup>   | 1.00 | 3.09  | 4.0500 (14) | 162     |
| C9—H9B···Cg1 <sup>ii</sup> | 0.99 | 2.81  | 3.6471      | 143     |

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) *x*, -*y*-1/2, *z*-3/2.